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On the Definition of the Generalized Scattering
Matrix of a Lossless Multiport
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Abstract—In this paper, we reconsider the question of the defi-
nition of the generalized scattering matrix (GSM) of a lossless de-
vice, and show the conditions that the GSM must satisfy in order to
correctly represent a lossless device, independently of the method
used for its calculation. Moreover, starting from circuit theory, pos-
sible choices are considered, and among them the one is examined
that seems to be the most meaningful when dealing with modes
below cutoff. When the circuit is lossless, in fact, the resulting GSM
is unitary, even when modes below cutoff are taken as accessible.
This property provides an immediate check of the correctness of
the computational implementation of actual problems. Finally, a
practical example of the usefulness of the conditions provided is
shown.

Index Terms—Scattering matrices, transmission line theory,
waveguide discontinuities, waveguide junctions.

I. INTRODUCTION

T HE generalized scattering matrix (GSM) is certainly
the most robust representation for modeling closely

interacting discontinuities. In this case, several modes, mostly
below cutoff, must be taken as accessible, as they contribute
to the interaction between cascaded discontinuities [1]. The
GSM is always stable, while other representations, such
as the admittance/impedance or the transmission matrices,
may become unstable when representing the interconnecting
waveguides, as they contain the hyperbolic functions cosh
or sinh, corresponding to evanescent modes. When modes
below cutoff are accessible, however, the properties of the
GSM defined as usual are quite different from those of the
scattering matrix describing only modes above cutoff, say,.
In particular, whoever has dealt with multimodal models of
discontinuities has seen that their GSMs are not unitary, while
the submatrix is still unitary. Although this fact was noted
many years ago [2], it is nevertheless very common to assume
that losslessness implies the unitarity of the GSM (see [3]–[6]).
A recent paper, concerning the use of the GSM in the context
of the mode-matching technique [7], reconsidered the problem
and showed that the GSM of a lossless and reciprocal junction
must obey some constraints ([7, eqs. 52–53]). This is useful
when checking the correctness of numerical implementation.
The above criteria, however, only hold when the junction is
abrupt, i.e., is located on a given transverse plane and, as such,
suitable to direct application of mode matching. They cannot
be applied if the discontinuity problem is of a different nature
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or if the scattering matrix is derived by a different technique.
In this paper, instead, formulas are found that apply to any
GSM, independently of the technique employed in the analysis.
Moreover, it is considered the possibility of definitions of the
GSM alternative to that currently adopted. In fact, it is common
practice to define the scattering matrix of a linear junction as
the one linking the amplitudes of the scattered modes to those
of the incident ones, when the electrical ports are perfectly
matched. This definition is physically meaningful when the
electrical ports represent propagating modes, but it is rather
obscure when ports represent evanescent modes.

For these modes, it is actually impossible to define a matched
load. Nonetheless, because of the formal analogy with the case
above cutoff, the amplitudes of the forward and backward at-
tenuating terms are usually treated as incident and reflected
waves, respectively. Hence, a mode below cutoff is considered
as “matched” when there is only the forward attenuating term
or, in other words, when the backward attenuating term van-
ishes. However, the behavior of modes above and below cutoff
is rather different: a mode above cutoff carries maximum power
when it is not reflected at all, while a mode below cutoff may
carry power only via the interaction of the forward and back-
ward attenuating terms.

It is, therefore, worthwhile to investigate the possibility of re-
defining the GSM in such a way that the discrepancies between
modes above and below cutoff occurring in the traditional def-
inition are overcome. Moreover, we explore a new definition
of the GSM preserving the fundamental property of unitarity in
order to retain an immediate and useful check on the formal cor-
rectness of the implementation.

In this paper, we show that the lack of unitarity of the GSM
as currently defined only depends on an arbitrary normalization
condition. Starting from circuit theory, it is possible to redefine
the GSM in such a way that unitarity is preserved. Of course,
such representation has the same validity as the classical one.
It is emphasized that the approach is absolutely independent on
the type of discontinuity and particular electromagnetic (EM)
technique used for deriving the parameters and, therefore, we
do not focus on any particular method. For a given junction,
we assume that a matrix links the electric and magnetic
field amplitudes of the accessible modes at the ports with re-
spect to the accessible modes of the feeds. It is worth recalling
that the accessible modes of a junction are the modes that cause
interaction with adjacent discontinuities. Their number, mainly
depending on the distance separating the discontinuities, is typ-
ically much smaller than that required to represent the unknown
field at the interface. The representation of the latter requires, in
fact, a number of local modes, that is in principle infinite.
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Fig. 1. Abrupt junction between two different waveguides of arbitrary cross
section.

We will start considering the GSM of a length of waveguide
interconnecting two successive discontinuities, which repre-
sents the fundamental block of any more complex circuit.

From the circuit point-of-view, this is equivalent to a set
of parallel uncoupled transmission lines where the line cor-
responding to the fundamental mode has real characteristic
impedance and propagation constant, whereas any re-
maining line has pure imaginary characteristic impedance
and real attenuation factor.

II. CURRENT DEFINITION OF MATRIX OF A LENGTH OF

WAVEGUIDE

The scattering matrix of a length of waveguide is currently
taken as [8]

for a propagating mode (1)

for a nonpropagating mode (2)

where is the propagation constant of the mode above cutoff
and is the attenuation of the mode below cutoff. Since there
exists no physical definition based on wave amplitudes of the
scattering matrix of a mode below cutoff, (2) is arrived at by
setting in (1). It is immediate to observe that the
scattering matrix (SM) of a line above cutoff satisfies unitarity

, while the second ones gives

(3)

which is obviously not the unit matrix.

III. GSM OF A JUNCTION MODELED BY MODE MATCHING

Let us consider now the abrupt junction between the two
waveguides #1 and #2 (Fig. 1) as the one considered in a re-
cent paper [7]. Under the mode-matching approach, the equiva-
lent circuit is defined by [7, eqs. (6) and (14)], repeated here for
clarity, representing the continuity of the electromagnetic tan-
gential field, at the interface between the two waveguides #1
and #2

(4)

(5)

where
and , respectively, represent

the normalized modal voltages and currents on the left- and
right-hand sides of the interface, and being the number
of modes considered at each side.is the coupling matrix.

Fig. 2. Mode matching corresponds to an ideal transformer coupling modal
lines.

The above equations correspond to a generalized ideal trans-
former, containing, in principle, an infinite number of elements,
as the one depicted in Fig. 2. For such a transformer, it is im-
mediate to show that as well as , where

and , apex denoting the adjoint matrix

(6)

and

being real (7)

Now, expressing the above equations in terms of the scattering
matrices of the circuit, we obtain

(8)

where is the unit matrix. The above equation must be satisfied
for an arbitrary excitation . This occurs only when

(9)

Now taking advantage from reciprocity, the above equation be-
comes

(10)

which is just [7, eq. (52)]. On the other hand, expressing (7) in
terms of the scattering matrix, we obtain

(11)

which, because of the arbitrariness of, coincides with [7, eq.
(53)]. The above equations, although useful to check the al-
gebraic correctness of the GSM, are applicable to just abrupt
junctions as they rely on the technique used (mode matching)
to solve the EM problem. They do not hold in general, when
the junction is of a more general kind or the circuit parameters
are derived by a different method. They cannot be used for dis-
tance to check the formal correctness of a scattering matrix of a
junction (not necessarily abrupt) analyzed either by the finite-el-
ement method (FEM) or finite-difference time-domain (FDTD)
method, or variational methods.
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IV. PROPERTIES OF THEGSM OF AN ARBITRARY LOSSLESS

CIRCUIT

In order to understand how the losslessness of a circuit re-
flects on the properties of, let us consider a -port circuit fed
by transmission lines of characteristic impedance. Re-
member that each electrical line corresponds to an accessible
modes, which may be either above or below cutoff. The circuit
is characterized by the impedance (admittance) matrix
linking the amplitudes of the modal electric fieldsto those of
the modal magnetic fields. The definition of the scattering ma-
trix requires introducing the normalized voltages and currents
and given by

(12)

where and are the ampli-
tudes of the transverse electric field of the forward and backward
(traveling or attenuating) modal wave, respectively,those of
the corresponding transverse magnetic field.is a diagonal ma-
trix whose element is the impedance normalizing theth port
of the circuit. The scattering matrix is formally defined [9] as
the matrix linking vectors and , which, in turn, are related to
the normalized modal voltages and currents as follows:

(13)

Therefore,

(14)

where is the normalized impedance matrix. Ac-
cording to (13), the coefficients and pertaining to the th
feeding line are given by

(15)

The expressions for and depend on the choice of the nor-
malization impedance . The most natural choice, indeed the
one universally employed, is

(16)

If the th mode isabove cutoff, it is immediate to note that,
being real, and are proportional to the amplitudes
of the forward and backward propagating waves, and ,
respectively. In addition, the normalized voltages and currents
satisfy the same power normalization as the unnormalized ones
as follows:

(17)

if the mode isbelow cutoff and still represent the ampli-
tudes of a forward and backward attenuating modes. Unfortu-
nately, the normalized voltages and currents do not sat-
isfy the same power normalizations as the unnormalized ones

. We have, in fact,

(18)

As an immediate consequence, the scattering matrix of a lossless
circuit is no longer unitary, for

(19)

It is apparent from the latter that losslessness implies unitarity
of the scattering matrix only if the normalization impedances are
real. For modes below cutoff, this requirement is in contrast to
the normalization above.

Note also that the first line of (19) must be satisfied what-
ever the situation and the method is used to compute the GSM.
Rewriting (19) in terms of the scattering matrix, the following
equation is obtained:

(20)

where

(21)

In order to satisfy the above equation,must have the following
form:

(22)

The latter provides indeed themost general criterionto check
the losslessness of the circuit, when its GSM is given. It deserves
to be emphasized how fundamental it is to know the normal-
ization conditions under which the GSM has been computed.
This aspect is particularly important when the GSM must be
built on the basis of a commercial software, for instance, by pro-
jecting the field on a given section on the accessible modes of
the waveguide. Note also that the above criterion is much more
useful than just considering the unitarity of the submatrix cor-
responding to modes above cutoff, as the latter check does not
involve modes below cutoff.

Finally, it is noted that an alternative set of equations repre-
senting the losslessness of a circuit can be derived by the prop-
erty of its impedance matrix to be imaginary. In fact, by ex-
pressing in terms of , we obtain

(23)

It is possible to show that (20) and (23) are equivalent since the
first one can be derived from the second and vice versa, as can
be verified by direct substitution.
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V. ALTERNATIVE DEFINITION OF THE GSM

It has been shown that the lack of unitarity of the GSM in-
volving modes below cutoff is essentially due to the normal-
ization adopted. On the other hand, nothing prevents one from
choosing a different normalization, e.g., by setting

(24)

For modes above cutoff, this position gives the same results as
the traditional one, as can be immediately checked. For modes
below cutoff, the relationship linking and to the ampli-
tudes of the forward and backward attenuating modes is slightly
more complicated than the standard one as follows:

(25)

Note that for modes below cutoff, and are no longer pro-
portional to the amplitudes of the forward and backward at-
tenuating modes and (25). The scattering parameter

is now computed when the remaining ports are
terminated on loads defined by the equation or
in terms of the forward and backward waves

(26)

Choice (24) is legitimate and it perfectly matches all the require-
ments on the scattering matrix. In addition, the unitarity is pre-
served in the lossless case and, for a mode above cutoff, the
interpretation of and as amplitudes of traveling waves is
maintained.

Let us now consider how the above formalism applies to the
case of a line below cutoff of characteristic impedance nor-
malized with respect to an arbitrary real impedance with real
and attenuation .

Starting from the well-known form of the -matrix of a
length of the line

(27)

Upon application of (14), we obtain

(28)

We note that: 1) this matrix is unitary; 2) and do not
vanish, in accordance with the fact that a line below cutoff re-
flects power; 3) as tends to infinity, and tend to
one, whereas tends to zero; and 4) astends to zero,
and tend to zero, whereas tends to one when normal-
ization (24) is assumed in the limiting case of a mode above
cutoff, we have and the standard form (1)
is recovered. In such case, the normalized current impedance

of all lines below cutoff results to be , while that of
the lines above cutoff is one, according to standard convention.
In that case, the 2 2 block corresponding to the fundamental
mode takes the form

(29)

whereas for a mode below cutoff

(30)

The overall GSM of a length of waveguide with a single prop-
agating mode takes the form

where

(31)

Of course, the above normalization applies to the GSM of any
linear device characterized by an impedance matrix.

VI. TERMINATION OF THE ALTERNATIVE MATRIX AT THE

INPUT AND OUTPUT PORTS

Since the input and output ports of the device are considered
to be terminated by infinite lengths of waveguides, all ports cor-
responding to higher order modes have to be closed on their
characteristic impedance, i.e., according to the nor-
malization assumed in (24). Note that a load representing a pure
reactive mode is modeled by a pure reactance, positive when
the mode is inductive and negative when the mode is capacitive.
Although both normalizations, the classical one and (24), are
formally correct, the latter represents a mode below cutoff as a
reactive load rather than a matched load. Therefore, the reduc-
tion of the GSM to the ordinary scattering matrix ,
where is the number of modesabovecutoff, takes place by
using the standard port reduction formula

(32)

where is a diagonal matrix, being the number
of accessiblemodesbelowcutoff, whose th element is given
by

(33)

block relates accessible modes of type, above cutoff, to
those of type , below cutoff. Although the proposed definition
of GSM is marginally more time consuming than the standard
one, as it requires reduction, nonetheless it provides a very fa-
miliar criterion for checking numerical implementation through
its unitarity. Conversely, it is apparent that one advantage of the
classical definition is that no extra effort is required to reduce
the GSM to that of the modes above cutoff.
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Fig. 3. E-planeT -junction.

Fig. 4. E-plane section of the twoE-plane 90� bends corresponding to the
even and odd excitation at ports 1 and 2 of theT -junction.

VII. U SEFULNESS OF THELOSSLESSNESSCONDITIONS OF THE

GSM

As previously observed, the main advantage of the new defi-
nition of the GSM is its unitarity since the latter constitutes an
useful and immediate check to apply to numerical results. When
using the standard definition of GSM, or any other correct def-
inition, the losslessness of the circuit can be always checked by
(22). When the junction is abrupt and mode matching is em-
ployed, one can use the check proposed in [7], which is, how-
ever, limited to this specific case. We note, however, that uni-
tarity is much more immediate, and besides, most workers in
the field do expect such a property from the scattering matrix of
a lossless junction. Also, note that, depending upon the defini-
tion assumed, the GSM must satisfy one of the above conditions,
that are, however, onlynecessary. In other words, their verifica-
tion is not sufficient to check the correctness of the analysis.

Their application can be very useful for distance when
dealing with symmetric components. In this case, the numerical
effort is strongly reduced when symmetry is taken into ac-
count. Consider, for instance, the waveguide-junction in the

-plane, shown in Fig. 3. Due to symmetry, the analysis of the
junction is conveniently carried on by separately considering
even and odd excitations at ports 1 and 2 in such a way that
only two 90 bends have to be studied, as shown in Fig. 4.
Suppose now to have computed the two scattering matrices

,
where are the number of accessible modes at
port 1, at port 3 in the even and odd cases. Both matrices
and have the following form:

where (34)

The global GSM of
the junction is obtained combining the submatricesand
as follows:

(35)
Now, when building the GSM, suppose making the
trivial, but very insidious mistake, consisting of setting

. It is immediate to observe that the block
of the GSM relative to modes above cutoff as normally de-
fined, continues to satisfy unitarity. Therefore, an inspection of
that property fails to detect the error. Also, [7, eqs. (52–53)] are
not applicable, as the junction neither is abrupt nor is analyzed
by mode matching. On the contrary, by checking either (22) or
the unitarity, when the GSM is defined as proposed above, the
mistake emerges immediately. This is just one of many simple
and realistic examples showing the practical usefulness of the
losslessness conditions.

VIII. N UMERICAL EXAMPLE

The classical GSM of the -junction discussed above, com-
puted at 8 GHz (the arms are WR90 waveguides), where we
have taken as accessible modes and at the three
ports, is given by

(36)

The matrix , defined as above in (21), is given by

(37)
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As can be checked, the above matrix perfectly satisfies the
requirements of (22). We do not report, for the sake of brevity,
the GSM computed derived on the basis of the alternative nor-
malization (24). In that case, it could be immediately checked
that the GSM is unitary.

IX. CONCLUSIONS

In this paper, it has been shown that there are many possible
correct definitions of the GSM of a junction depending upon the
impedances chosen to normalize modal voltages and currents.
A general criterion has been provided to check the GSM with
respect to the losslessness of the device, independently of the
junction itself and of the method used for its calculation. Also,
it is possible to define the GSM in such a way that its unitarity is
preserved when dealing with lossless devices. We have shown
the usefulness by considering an example where unitarity per-
mits to uncover an error that could easily occur in an incorrect
implementation of the GSM of an E-plane T-junction.
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